
RESTful APIs
Recitation 4



Plan for Today

1. Client-Server Model in Web
2. HTTP 
3. RESTful API
4. Exercise



Client-Server Model in Web

Clients

Server

Request

Response



Client-Server Model in Web

Clients

Server

Request

Response



Clients

Server

HTTP (Hypertext Transfer Protocol)

HTTP Request

HTTP Response



Clients

Server

HTTP (Hypertext Transfer Protocol)

HTTP Request

HTTP Response

HTTP request
1. URL
2. Method

● GET
● POST
● PUT / 

PATCH
● DELETE



Clients

Server

HTTP Request

HTTP Response

HTTP (Hypertext Transfer Protocol)

HTTP response status 
codes

e.g., 404 error

HTTP request
1. URL
2. Method

● GET
● POST
● PUT / 

PATCH
● DELETE



https://httpstatusdogs.com

https://httpstatusdogs.com


Clients

Server

HTTP Request

HTTP Response

One way of using HTTP: RESTful API



RESTful API

a set of definitions and protocols for 
building and integrating application 
software

RESTful API is an API that conforms to the constraints of REST architectural style

an architectural standard dictating the 
structure of an HTTP request for more 
consistent, reliable client-server 
communication

“Applying verbs to nouns” 



RESTful API

Why use RESTful API?
→ Early web APIs were poorly designed.

/find_users?name=arvind&action=getInformation
/shopping_cart?action=update_qty&user=123
/postComment?entryID=853&text=...

● Not easily discoverable: what goes in the path, what goes in the query parameters?
● Inconsistent: APIs could be internally inconsistent. Different APIs might have 

different path/parameter conventions
● Difficult to maintain/extend



RESTful API

“Applying verbs to nouns” 



Instance

id name reviews

1 Arvind …

2 Daniel …

3 Katrina …

A resource of “professors”

Collection

Imagine you have this database…



URLs identify a representation of a resource.
Use path hierarchies to imply structure.

Collections
● /profs
● /profs/reviews
● /profs/arvind/reviews

Nouns are Resources

Instances

● /profs/arvind
● /profs/arvind/reviews/5



Verbs take action on resources

The four basic functions of persistent data is CRUD.
These functions map to HTTP methods.

Create POST
Read GET
Update PUT / PATCH
Delete DELETE

What’s up with PUT vs PATCH?
● PUT: Overwrite the pre-existing item
● PATCH: Make a partial edit to the item



Why bother? Why not just use POST for everything?
→ Methods carry different semantics and can be applied to the same noun

Verbs take action on resources



Why bother? Why not just use POST for everything?
→ Method semantics make it easier to reason about data safety

Verbs take action on resources



What about non-CRUD actions?
→ Instead of calling an action, create (or delete) a resource

● Instead of “login”, create a “session”
● Instead of “logout”, delete the “session”

Verbs take action on resources



Conceptual Exercise: Rewrite the bad URLs!

We saw these earlier:

● /find_users?name=arvind&action=getInformation
● /shopping_cart?action=update_qty&user=123
● /postComment?entryID=853&text=...

What would they look like if they were RESTful?

● GET /users/arvind
● PATCH /carts/123
● POST /comment

○ with a body {entryId: 853, text: ‘hello world’}



Clone the repo: https://github.com/61040-fa22/recitation-restful

Exercise 

https://github.com/61040-fa22/recitation-restful


Clone the repo: https://github.com/61040-fa22/recitation-restful

Finish the todos in routes/bookmarks.js and public/javascripts/services.js
● Creating a bookmark

○ TODO 1. Design the RESTful API endpoint (URL) for creating a bookmark
○ TODO 2. Change the "get" to a proper method for creating a bookmark
○ TODO 3. Indicate the proper status code when there already is a 

bookmark with the same identifier (name)
○ TODO 4. Indicate the proper status code when the server successfully 

creates the bookmark
● Deleting a bookmark

○ TODO 5. Design the RESTful API endpoint (URL) for deleting a bookmark
○ TODO 6. Change the "get" to a proper method for deleting a bookmark

Exercise 

https://github.com/61040-fa22/recitation-restful

