
6.1040 Rec 5
Node, Sessions, & Cookies 🍪

Plan for today

1. Review yesterday’s lecture (Express, routes)

2. Middleware in Express

3. Sessions and cookies

4. Demo and exercises!

Moving to Node.js

● JavaScript environment built for web dev. Lots of packages so you don’t have

to rebuild generic concepts

● Node vs Jekyll: dynamic vs static

Static Dynamic

Site is the same for every
user

Site is different depending
on the user

Site is pre-generated Site is generated on the fly

Faster to load Slower to load

Review of Express

● Express: web serving framework built on Node.js

● Main purpose: routing

○ Secondary purpose: adding even more packages

● Routing: router.method(“/route”, (req, res) => { })

verb noun

Review of routing syntax

● Line 1: RESTful verb and noun

● Line 2: request and response

● Line 3: accessing body of request

● Lines 4-6: sending HTTP status code and message in response

Middleware

● Anything that happens between the request and the response

● Things you want to do before you even start the response

● Things you want to do on a lot of routes

● Often used for validation. Common examples

○ Checking if a user is logged in

○ Checking if a route’s parameters are correctly formatted

● Note: the UI also provides validation, but good to have both to prevent

hackers

Middleware in Express

Middleware + Routing

Exercise

Exercise: write a piece of middleware that checks if a username is valid (you can

decide validity!)

Previous middleware for reference:

Example solution

*Note - there is actually a mistake in this solution! There
should be a return inside the if statement (after line 7)

Sessions

● A session = a set of requests from the same client in a given time period

○ Same client = same person? Not always

● Why do we care?

○ HTTP is stateless → need sessions for persistence

● How long should the time period be? How many requests are allowed? Out of

scope :)

Cookies

● Cookies are how servers keep track of sessions

● Unique identifier for the client for the duration of the session

● Also how servers keep track of a lot of other things

○ Your preferences (good)

○ Your preferences (bad)

Example repository

Repo: https://github.com/61040-fa22/rec5

Installation instructions:

● Git clone using the URL under “Code” on the top right:

● Move to the cloned directory in the command line

○ Run npm install (just the first time after you clone the repo)

○ Run npm start (every time you want to start the site)

○ Go to localhost:3000/ in your browser

https://github.com/61040-fa22/rec5

Exercises

1. Add a variable to sessions to count the number of times the user has viewed

the page and report it back to them in the response

2. Your choice! Extend the implementation. Some ideas:

a. Add middleware that checks if the user’s password is correct and if their

account exists, and don’t let them log in if not

b. Add middleware that checks if the user is logged in/logged out, and don’t

let them log out/log in otherwise

c. Add middleware that checks if the user’s username is taken and don’t let

them create an account if it is

Resources

● Official Express docs (pretty helpful!):

○ Routing in Express: https://expressjs.com/en/guide/routing.html

○ Middleware in Express: https://expressjs.com/en/guide/using-middleware.html

● Multi-part Express tutorial:

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs (multi-part tutorial)

● express-session:

○ https://www.npmjs.com/package/express-session (official docs, lots of info but harder to follow)

○ https://www.tutorialspoint.com/expressjs/expressjs_sessions.htm (unofficial tutorial, not

guaranteed to be up to date but more helpful overall)

https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/using-middleware.html
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs
https://www.npmjs.com/package/express-session
https://www.tutorialspoint.com/expressjs/expressjs_sessions.htm

