
Recitation 6 - MongoDB and Mongoose

Introduction
● As seen in previous recitations, we need for a mechanism to store data that can

persist
○ What does it mean to persist? Answer: Preserve state and retain data even

after access to it is lost
○ Needs to be unaffected by server shutdowns/crashes, user clearing of

browser cache, etc.
● Databases are designed to efficiently store data in an easily extensible, modifiable,

and searchable way
○ Qualities

■ Extensible: can easily define and redefine data attributes for
organization

■ Modifiable: stored data can be created/deleted/edited concurrently
■ Searchable: optimized to quickly query and deliver usable data

○ Tons of research into database design to optimize for these qualities; take
6.814 for more info

● Technologies used for persistent storage in this class:
○ MongoDB: document-oriented database
○ Mongoose: library abstracting MongoDB interactions into a familiar JSON

interface

Document-oriented Databases
● Subset of NoSQL databases
● Stores all information for a given object in a single document in the database

○ Documents are addressed in the database via a unique key (ID) representing
that document for faster search and retrieval

○ Relies on internal structure in the document in order to extract metadata for
optimization

● Since info is all stored in same document, no additional work is needed to find
related data when you query for a specific attribute of that document

● Important feature: data formats are often not predefined



○ Any sort of document can be stored in any database and can change in type
and form at any time

○ Example: A new field can be added to new documents as they are inserted,
but will not be added to documents already stored

○ This allows for greater flexibility and rapid development, but compromises
on consistency

● Database's API or query language allows you to retrieve documents based on
content or metadata

ORMs
● Object Relational Model (ORM) is one way of interfacing with a database system
● An ORM models (represents) the website's data as JavaScript objects and maps

them into the underlying database
○ Benefits:

■ Can write code that virtually looks like native code and offers more
familiarity to programmers than a query language

■ Provide an easy way for you to validate data schema (structure)
○ Detriments:

■ Performance is generally worse since they use translation code to
map between objects and the database format, which may not use
the most efficient database queries

MongoDB and Mongoose

● MongoDB: document-oriented database
○ Features:

■ Querying: Can search according to a specific field, a range of values,
and even regular expressions!

■ Indexing: Any field can be set at the primary or secondary key(s); even
ones containing objects, not just primitive values

● Can utilize this to mark combinations of fields for uniqueness!
● Mongoose: ORM for MongoDB

○ Features:
■ Database connections: Abstracts a lot of the work behind connecting

to a MongoDB server and maintaining that connection



■ Predefining structure: Can preemptively define the structure of
inserted documents with schemas by declaring fields and their types,
and create models (searchable collection of documents) out of them

■ Data validation: Enforces the acceptable range of field values in
documents, and can define error message in event of validation
failure

■ Virtual properties: Allows you to construct/deconstruct a new
property from stored fields, instead of storing them every time

● Very popular combo in the Node community because document storage and query
system looks very much like JSON and is thus familiar

In-class activity (40 min)

Explain schemas/models given in starter code (10 min)
● Assignment

○ name (string)
○ points (number)
○ due date (date)
○ submissions (virtual population)

● Submission
○ assignment (Assignment)
○ date (date)
○ score (number)
○ author (Student)

● Student
○ First name (string)
○ Last name (string)
○ Middle name with:

■ Setter to capitalize first letter of middle name only
■ Getter to only return the capitalized first initial (e.g. Nicholas -> N.)

○ Full name
■ Setter to split parameter into first, middle, last name parts
■ Getter to return conjoined string of first, middle, last name parts

● Key points to cover:
○ Getters/setters
○ Validation



○ Virtual properties
○ References and population (references are IDs by default)

Live exercises (30 min)
● Repo link: https://github.com/61040-fa22/rec6
● Setting Up MongoDB Atlas

○ Connect to a MongoDB server with Mongoose
● Walk through each of the existing schemas/models (Assignment, Student,

Submission)
● Make modifications to the following schemas:

○ Full name (virtual property computed from first, middle, last name)
● Searching for records

○ Find upperclassmen (hint: current seniors are 2023, juniors are 2024)
● Creating and modifying documents

○ Add a student named Daniel Nicholas Jackson Jr. with class year 3000.
○ Add a submission by author Daniel Nicholas Jackson Jr. for assignment Fritter

Diverge, current date, with no score.
○ Grade Daniel N. Jackson's submission for Fritter Converge with score 10 by

modifying his previous submission.
● Time permitting, ask students to suggest exercises to live code

https://docs.google.com/presentation/d/1HJ4Lz1a2IH5oKu21fQGYgs8G2irtMqnVI9vWDheGfKM/edit#slide=id.p1
https://github.com/61040-fa22/rec6

