
Recitation 6
MongoDB and Mongoose



Need for a database

● How can we store data persistently?
○ Robust against server shutdowns/crashes, user clearing of 

browser cache, etc.
● Other considerations for data storage:

○ Modifiability: create/modify/delete data concurrently 
○ Extensibility: easily redefine data attributes for organization
○ Searchability: quickly find and deliver data in a usable format

● Databases are designed to satisfy all of these qualities!



Document-based databases

● Subset of NoSQL databases
● Stores all information for a given object in a single document in the 

database
● Important feature: data formats are often not predefined
● Database's API or query language allows you to retrieve documents 

based on content or metadata



Object Relational Models (ORMs)

● Alternative way of interfacing with a database system besides native 
query language

● ORM models (represents) the website's data as JavaScript objects 
and maps them into the underlying database
○ Benefits:

■ Familiarity
■ Easy validation

○ Detriments:
■ Performance



MongoDB + Mongoose

● MongoDB: document-oriented database
○ Querying
○ Indexing

● Mongoose: ORM for MongoDB
○ Abstracting database connections
○ Schemas (for structure)
○ Data validation
○ Virtual properties (not stored; "dynamic")

● Very popular combo in the Node community due to JSON familiarity



Recitation Code

• https://github.com/61040-fa22/rec6
• Three types of data:

• Assignment
• Submission
• Student

https://github.com/61040-fa22/rec6


MongoDB Atlas Setup

• Follow instructions: 
https://docs.google.com/presentation/d/1HJ4Lz1a2IH5oKu21fQGYgs
8G2irtMqnVI9vWDheGfKM

• Add copied connection string and password to .env file
• Run npm start to see if you can connect

https://docs.google.com/presentation/d/1HJ4Lz1a2IH5oKu21fQGYgs8G2irtMqnVI9vWDheGfKM
https://docs.google.com/presentation/d/1HJ4Lz1a2IH5oKu21fQGYgs8G2irtMqnVI9vWDheGfKM


Code Review: Assignment Schema

● Introduction to Schema and Model
○ Schemas define models
○ Schema = defining fields on document with types + validation

■ Example: dueDate attribute contains Date value (when 
assignment should be submitted by)

○ Models = interface for documents (finding, creating, modifying)
■ Example: Assignment.findOne(), new Assignment()

https://mongoosejs.com/docs/guide.html#definition
https://mongoosejs.com/docs/guide.html#definition


Code Review: Submission Schema

● New feature: Data validation
○ Purpose: Validate data for a field before it gets 

inserted/updated in the database
○ Examples:

■ score attribute rejects all negative values with error message 'Score 
cannot be negative'

○ Other examples:
■ Assignment.name (must start with Fritter)
■ Student.year (no alumni or prefrosh)

https://mongoosejs.com/docs/validation.html


Code Review: Assignment Schema

● New feature: Virtuals and virtual population
○ Virtuals: Contain values computed from other attributes that 

aren't actually stored in the document itself
■ Great way to do synchronizations!
■ Example: submissions field contains all Submissions 

associated with this Assignment

https://mongoosejs.com/docs/guide.html#virtuals
https://mongoosejs.com/docs/populate.html#populate-virtuals


Code Review: Submission Schema

● New feature: Object references and population
○ Purpose: Denote that attribute contains value of some type 

we have a schema for
○ Examples:

■ assignment attribute stores the Assignment this submission is 
for

■ author attribute stores the Student who made this submission
○ OP: Reference a document by its ID. If developer needs to 

fetch its value, populate it to retrieve its data
■ Also see findAll() in index.ts

https://mongoosejs.com/docs/schematypes.html#objectids
https://mongoosejs.com/docs/populate.html#populate


Code Review: Student Schema

• New feature: Getters and setters
• Purpose: Execute custom logic when getting or setting a 

property on an object
• Examples:

• name.first, name.last,name.middle setters set value to capitalize 
first letter of a given name part, regardless of case of input

• name.middle getter always outputs capitalized initial only despite 
storing full middle name

https://mongoosejs.com/docs/tutorials/getters-setters.html


Exercise: Student Schema

• Make a new virtual name.full on the Student schema computing 
a student's full name
• Setter to split parameter into first, middle, last name parts
• Getter to return conjoined string of first, middle, last name 

parts

https://mongoosejs.com/docs/guide.html#virtuals


Searching for documents

• How? <Model>.find()
• <Model> should be replaced with Assignment, Student, etc.
• Provide object properties to filter by attribute criteria
• {} = find everything
• {attr: val} = find only documents with value val in attribute 

attr
• Exercise: Find all upperclassmen students

• Hint: seniors = 2023, juniors = 2024

https://mongoosejs.com/docs/queries.html


Creating new documents

• How? Instantiate a new class of <Model>
• See repopulate(), we do a lot of that there...

• Call save() on the instantiated model to insert it into the database
• Exercises:

• Add a student named Daniel Nicholas Jackson Jr. with class year 
3000 (what happens?)

• Add a submission by author Daniel Nicholas Jackson Jr. for 
assignment Fritter Diverge, current date, with no score.
• Hint: Find appropriate assignment and student documents so you can 

reference them!

https://mongoosejs.com/docs/api.html#model_Model-save


Modifying documents

• Exercise: Grade Daniel Nicholas Jackson Jr.'s submission for Fritter 
Converge with score 10 by modifying his previous submission.
• Multiple approaches:

• findOneAndUpdate()
• find the right submission document, set its properties 

correctly, call .save() on it

https://mongoosejs.com/docs/api.html#model_Model-findOneAndUpdate
https://mongoosejs.com/docs/api.html#document_Document-save


If we have time

• Suggest your own document queries to livecode
• Anything you guys want to implement but aren't sure how 

to do?



Resources

• https://mongoosejs.com/docs/guide.html
• https://mongoosejs.com/docs/api.html
• https://mongoosejs.com/docs/typescript.html

• Tip: Use the search bar
• Very nice guide: 

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express
_Nodejs/mongoose

https://mongoosejs.com/docs/guide.html
https://mongoosejs.com/docs/api.html
https://mongoosejs.com/docs/typescript.html
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/mongoose
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/mongoose

