
Vue Essentials &
Fritter Frontend

6.1040 Recitation 8
Fall 2022

Today’s goals

1. Review this week’s lecture content about
Vue & Introduce new Vue concepts

2. Familiarize with the Fritter starter code

…in parallel

What we’re covering

Review of lecture & expanding on it:

● Components
● Lifecycle
● Data and methods
● Binding and event handling (v-bind, v-on,

v-model)
● List rendering (v-for) and conditionals (v-if

and v-else)
● Props (parent to child)
● this.$emit (child to parent)
● Store

New:

● Mixins

Quick demo of the Fritter frontend

http://localhost:8080/#/

http://localhost:8080/#/

Application Structure

File structure

/client and /server directories correspond
to Client and Server side

Components

Vue components group by functionality instead
of separating your template, logic, and styling
code (HTML/CSS/JS) into separate files

Components are organized as a
tree

Diagram of Fritter (incomplete)

App.vue
(root)

FreetsPage AccountPag
e

ChangePass
wordForm

ChangeUser
nameForm

GetFreet
sForm

FreetCo
mponent

CreateFr
eetForm

DeleteAccou
ntForm

Ap
p.

vu
e

FreetsPage

AccountPage

FreetComponent

GetFreetsForm

ChangeUsername
Form

ChangePassword
Form

Putting the app on the page

Everything is inserted into the page via an HTML
container

index.html:

<div id="app"></div>

main.ts:

app.mount('#app')

Component Essentials

Examples:

App.vue beforeCreate()

FreetsPage.vue mounted()

Component Lifecycle

https://v2.vuejs.org/v2/guide/instance.html#Lif
ecycle-Diagram

For our purposes:

● created()
● mounted()
● unmount()

https://v2.vuejs.org/v2/guide/instance.html#Lifecycle-Diagram
https://v2.vuejs.org/v2/guide/instance.html#Lifecycle-Diagram

Data

● data() is a function
● computed properties depend on data
● When these values change, Vue reacts by

updating the dependent components
based on the new values

Example: FreetComponent.Vue

Methods

● methods is an object containing desired
methods for the component

● Vue automatically binds the this value
for methods

Example: FreetComponent.Vue

Attribute binding

● Directive: v-bind
● Shorthand: :
● Used to define an attribute on an element

○ v-bind:class
○ v-bind:style
○ v-bind:src
○ etc.

Example: BlockForm.vue

Event Handling

● Directive: v-on
● Shorthand: @
● Used to attach an event listener to the

element

Example: BlockForm.vue

Form Input Bindings

● Directive: v-model
● Shorthand: none
● can be used on inputs of different types
● Two-way synchronizes the state of form

input elements with the corresponding
state

Example: InlineForm.vue

Summary of directives

● v-on aka @ - attach an event listener to
the element.

● v-bind aka :
○ one-way binding
○ Two uses: assign values for built-in

HTML attributes OR a component
prop to an expression

● v-model
○ two-way binding on a form input

element or a component
○ Equivalent to combining v-bind

and v-on:input

These two lines are equivalent:
<input

 v-bind:value="text"

 v-on:input="event => text =
event.target.value">

<input v-model="text">

List Rendering

● Directive: v-for
● Use with key attribute

Example: FreetsPage.vue

Conditional Rendering

● Directive: v-if, v-else-if, v-else
● Shorthand: none

Example: FreetsPage.vue

Small exercise:

Disable the Submit Edit button if there are no
changes to the Freet content.

State management

Props: Parent to Child

Props are data that are passed from a parent
component to child components

Example: FreetComponent.Vue

$emit: Child to Parent

A component can “emit” custom events
(this.$emit) with data, and (only) the parent
can listen for the event

Example:

Child component:

<button @click="$emit('someEvent')">click me</button>

Parent component:

<MyComponent @some-event="callback" />

Store

● Use store when we need multiple
components that share a common state

● We store this common state in a global
“store”

Example: App.vue

When to use props and this.$emit
vs. when to use store?

● Is there a direct hierarchical relationship
between my parent and child components
that store and use this prop?

○ If yes then use props/events
● How long must the data persist? If you’re

only using this data for one form and then
never needing it again, try to use
props/events

● Do you need the same data across many
“pages”?

○ Then use Vuex
● Are many components sharing and

updating the same data object?
○ If yes, use Vuex

New Topics

Mixins

● Used for reusable logic
● Kind of like inheriting classes - e.g. “Dog”

inherits “Animal”

Example: BlockForm.vue

Concepts in lecture

● Template syntax (e.g. {{message}})
● Slots
● Scoped CSS
● Router

Reminder: we are using
Vue 2 not Vue 3

(You might see it as Options
API vs Composition API)

