
Recitation 9 - Vuex and Vue Router

Introduction
● In the previous recitation, you were introduced to Vue, a reactive framework for the

web.
● In today's recitation, we'll be reviewing auxiliary libraries of Vue that help us

accomplish more; specifically, ones that enable us to create "single-page"
applications and simplify state management

State management with Vuex
● As you may have realized from a previous recitation and working on your

assignment, it can get very cumbersome passing data between the props of
different components.

○ Passing props can be tedious for deeply nested components, and simply
doesn't work for sibling components.

○ We often find ourselves resorting to solutions such as reaching for direct
parent/child instance references or trying to mutate and synchronize
multiple copies of the state via events.

○ Both of these patterns are brittle and quickly lead to unmaintainable code.
● Instead, we can extract the shared state out of the components into a centralized

store (think: storage) for all the components to access, with rules ensuring that the
state can only be mutated in a predictable fashion.

○ With this, our component tree becomes a big "view", and any component can
access the state or trigger actions, no matter where they are in the tree!

○ By defining and separating the concepts involved in state management and
enforcing rules that maintain independence between views and states, we
give our code more structure and maintainability.

● We can accomplish this in Vue through the Vuex library
○ Vuex uses a single state tree - that is, this single object contains all your

application level state and serves as the "single source of truth."
■ Great for keeping track of variables "globally"

○ We can inject a store containing an initial state and mutations into the root
app so that we can access it through this.$store

■ To modify a value in the state, trigger a state change with the
store.commit method with the name of the mutation as the
parameter

■ Note that mutations must be synchronous; should you rely on a API
call to mutate your store, consider using actions instead

○ Getters can help you dynamically compute values from store values despite
not explicitly storing them (similar to Mongoose getters)

■ For example, consider a list of freets in the state. You might want to
filter the stored freets by their author.

■ Instead of having another store for the freets of each author, just
make a method style getter that filters the states freets by their
author.

■ Getters will receive the state as their 1st argument for you to compute
values off of

■ The getters will be exposed on the store.getters object, and you
access values as properties

■ You can also pass arguments to getters by returning a function.

https://v3.vuex.vuejs.org/
https://v3.vuex.vuejs.org/guide/actions.html
https://v3.vuex.vuejs.org/guide/getters.html

Server-side routing
● When you click on a link on a website, your browser communicates with a server to

request new content to display for you based on the URL you're visiting.
● When the server responds with HTML content, the entire page reloads to render

the new content, and the URL in your address bar changes.
● You can save this new URL and come back to the page later on, or share it with

others so they can easily find the same page. Additionally, your browser remembers
your navigation history and allows you to navigate back and forth.

● This server-delegated process of allowing users to navigate between pages is called
server-side routing. This is the traditional way of routing for most web applications.

Client-side routing
● On the other hand, modern websites often utilize client-side routing.
● In client-side routing, client-side JavaScript can continuously do the following:

○ Intercept user navigation to a different page on the website
○ Dynamically fetch template data accordingly to fill a view with
○ Update the page's HTML DOM with the view without reloading the page!

● Since no reloads happen, this gives the illusion to users that they are browsing the
same page despite performing many interactions over a long period of time,
ultimately creating a more streamlined browsing experience; there's no awkward
page transitions or reloads to deal with!

● However, user behavior associated with browser navigation is broken through this
philosophy:

○ Users often link to specific pages in an application; if everything is rendered
on the same page, how can they link to different parts of the website?

○ Users may want to move back and forth between pages according to their
browser history; if we treat everything as the same page, how can we keep
track of which part of the website the user just viewed?

Vue Router
● Enter Vue's solution to this problem: managing client-side routing through their Vue

Router library
○ Maps specific components to be displayed in the router-view depending on

the path you’re visiting
■ For example, a component mapped to route /docs would be displayed

vuejs.org/#/docs
○ Provides convenient ways to change the user’s navigation programmatically
○ Tracks browser navigation and history under the hood

https://v3.router.vuejs.org/
https://v3.router.vuejs.org/

● Basic usage
○ Define view components, or import them from other files.
○ Define routes, each an object with the following options:

■ path to render the component at (e.g. '/', '/register')
■ component to represent the rendered component
■ name for the route, so that you can reference it the same way even if

the path changes
○ Create a router instance and pass in the routes as a parameter option
○ Similar to how we inject the store into the root app, mount the router onto

the root instance
● <router-link> is the component for enabling user navigation in a router-enabled

app, serving as links that users can click on to trigger the re-rendering of the page.
○ It renders as an <a> tag with the specified href by default, and automatically

gets an active CSS class when the target route is active.
○ The target location is specified with the to prop (in contrast to href for the

<a> element)!
○ Always use <router-link> to link within different parts of your SPA!
○ Check your understanding: Where in the starter code do we use

<router-link>?

■ Select/highlight text to reveal answer: In the Navbar; also there's one
on the home page to sign in when you are logged out

● Dynamic routing
○ Often times, we will need to map routes with the given pattern to the same

component (e.g. using the same Profile component to render a user profile
for each user, but with different user IDs)

○ In vue-router, we can use a dynamic segment in the path to achieve that,
very similar to Express

■ You can access the named parameter by accessing the
this.$route.params; for example, you can access figure out which
user you should render a profile for route /profiles/:userId
this.$route.params.userId

● Programmatic navigation: To programmatically change what page gets rendered
at any time, access the router through this.$router; the methods of the router
closely reflect the History browser API

○ To navigate to a different URL, use router.push(); this adds the page to the
browser history

○ To navigate to a different URL without changing browser history, use
router.replace()

○ To navigate to a previous page in your browser history, you can use
router.go(-1); similarly, you can move to the previous n-th page with
router.go(-n), or move to the next n-th page with router.go(n)

○ Check your understanding: Where in the starter code do we use the router
to programmatically change the route? (Hint: authentication)

■ Select/highlight text to reveal answer: Signing in and out, registering,
and also deleting account

○ Check your understanding: Why don't we use <router-link> in
authentication forms and instead rely on programmatic navigation?

■ Select/highlight text to reveal answer: We only want to switch views
only if their login/registration request succeeded. Using a router-link
could naively redirect the user back to the home page, regardless if
they provided valid authentication credentials.

● Navigation guards
○ We can prevent users from accessing pages they're not supposed to visit with

navigation guards
○ Use router.beforeEach to check if some page the user is attempting to

navigate to, from a different page, is acceptable, and specify the next()

https://v3.router.vuejs.org/guide/essentials/dynamic-matching.html#reacting-to-params-changes
https://v3.router.vuejs.org/guide/essentials/navigation.html
https://developer.mozilla.org/en-US/docs/Web/API/History
https://v3.router.vuejs.org/guide/advanced/navigation-guards.html

function to control if they can proceed as desired, or redirect them to an
entirely different page (similar to Express!)

○ Example in Fritter frontend starter code:
■ If we are navigating to the Login page but are already signed in,

redirect to the Account page instead
■ If we are navigating to the Account page but are signed out, redirect

to the Login page instead
○ Like Express, ensure that next() is called exactly once in any given pass

through the navigation guard!
● There's a lot more you can do with Vue Router! Review its documentation for more

details.

Exercises: https://github.com/61040-fa22/rec9

1. Move todo items into the Vuex store
a. Add a new state variable items
b. Add a new mutation addItem
c. Update TodoInputForm and TodoInputPage to use the store

2. Add a new TodoStatsPage with the following details:
a. the total number of items in the todo list
b. the total number of items in the todo list containing the word "important"

(store getter)
3. Add a new TodoFilterStatsPage with the following details:

a. Given route /stats/SOMEKEYWORDHERE, shows the total number of items in
the todo list containing the keyword (store getter)

4. Add some tools to help user navigate to and from the keyword stats page:

https://github.com/61040-fa22/fritter-frontend-private/blob/main/client/router.ts#L19-L33
https://github.com/61040-fa22/fritter-frontend-private/blob/main/client/router.ts#L19-L33
https://v3.router.vuejs.org/guide/
https://github.com/61040-fa22/rec9

a. Add a new InlineForm programmatically navigating to the corresponding
filter page when they submit the form

b. Add a Back button on the TodoFilterStatsPage to allow user to return to their
previous page

