
6.1040 Rec 9
Vuex and Vue Router

What we’ll be covering today

•State management with Vuex
• Mutations
• Getters

•Server-side vs. client-side routing
•Vue Router

• Dynamic routing
• Programmatic navigation
• Navigation guards

Motivation for Vuex

•Passing data between different components can be difficult
• Tedious for deeply nested components
• Straight up doesn’t work for sibling components

•Unsustainable workarounds:
• Reaching for direct parent/child instance references
• Trying to mutate and synchronize multiple copies of the state via

events

Motivation for Vuex

• Instead, extract the shared state out of the components into a
centralized store
• Ensures the state can only be mutated in a predictable fashion
• Any component can access the state or trigger actions, no matter

where they are in the tree!
•We can accomplish this in Vue through the Vuex library

• Vuex uses a single state tree
• Great for keeping track of variables "globally"

https://v3.vuex.vuejs.org/

Basic Vuex usage

• In the store, define:
• Initial values of the state
• Synchronous mutations to modify

the state
• Inject store into root component
•Accessing store from child

components: this.$store
• Call commit() with mutation name

to trigger mutation
• Access state values from .state

Exercise: Todo List
https://github.com/61040-fa22/rec9

Demo at /public/demo.html

https://github.com/61040-fa22/rec9

Exercise 1

•Move todo items into the
Vuex store
•Add a new state variable items
•Add a new mutation addItem
•Update TodoInputForm and
TodoListPage to use the store
instead of keeping data and
emitting events to
TodoListPage

Store getters

•Help dynamically compute values
from store values
• In the store:

• Getters receive the state as their 1st
argument for you to compute values
off of

• You can also pass arguments to
getters by returning a function

• The getters will be exposed on the
store.getters for you to access

https://v3.vuex.vuejs.org/guide/getters.html

Exercise 2a

•Make a new page TodoStatsPage that displays:
• The total number of items in the todo list
• A new store getter that finds the number of todo items with

keyword “important” in them
• Your answer should be just a few lines! No need for imports, data(),

methods() etc.

Client vs. server-side routing

•Server-side routing (traditional method)
• Browser requests new page content from web server
• When the server responds with HTML content, the entire page

reloads to render the new content
•Client-side routing (new method)

• Intercept user navigation to a different page on the website
• Dynamically fetch template data to update the view without

reloading page
• Problem: How do we update browser history if we technically stay

on the same page the whole time?

Vue Router

•Maps specific components to be displayed in the router-view
depending on the path you’re visiting
• For example, a component mapped to route /docs would be

displayed vuejs.org/#/docs

•Provides convenient ways to change the user’s navigation
programmatically
• Tracks browser navigation and history under the hood

Basic router usage
•Define view components, or import

them from other files.
•Define routes, each an object with

the following options:
• path to render the component at
• component to render
• name for the route

• Create a router instance
• Pass in the routes as a param option

•Mount the router onto the root
component

Basic router usage

•Page component matching route
will replace the <router-view>
element
•<router-link> enables navigation in

a router-enabled app
• It renders as an <a> tag with the

specified href by default
• Automatically gets an active CSS

class when the target route is active
• The target location is specified with

the to prop

Exercise 2b

•Modify the router to map the TodoStatsPage
component you made in 2a to the route “/stats”

Dynamic routing
•Some routes with a common patterns should map to the
same component
• E.g. using the same Profile component to render a user profile for

each user, but with different user IDs
•We can use a dynamic segment in the path to achieve this

• Access the named segment from $route.params

https://v3.router.vuejs.org/guide/essentials/dynamic-matching.html#reacting-to-params-changes

Exercise 3

•Add a new TodoFilterStatsPage with the following
details:
• Maps to route /stats/SOMEKEYWORDHERE
• Given the keyword, shows the total number of items in the todo list

containing the keyword (store getter)
• Again, the new page should only be a few lines

Programmatic Navigation
• To programmatically change what page gets rendered at any time, access

the router through this.$router
• Navigate to different URL: router.push()
• Navigate to different URL without updating history: router.replace()
• Navigate to previous page in history: router.go(-1)

• Can move to the previous n-th page with router.go(-n)
• Can move to the next n-th page with router.go(n)

• Check your understanding:
• Why don't we use <router-link> in authentication forms and instead rely on

programmatic navigation?
• Where in the starter code do we use the router to programmatically change the route?

https://v3.router.vuejs.org/guide/essentials/navigation.html

Exercise 4

•Add some tools to help user navigate to and from
the keyword stats page:
• Add a new TodoFilterForm programmatically navigating to the

corresponding filter page when they submit the form
• Note: Make a copy of TodoInputForm and modify accordingly

• Add a Back button on the TodoFilterStatsPage to allow user to
return to their previous page

Navigation guards
• We can prevent users from accessing pages they're not supposed to

visit with navigation guards
• Use router.beforeEach to check if some page the user is attempting

to navigate to from a different page, is acceptable
• Specify the next() function to control if they can proceed as desired, or

redirect them to an entirely different page (similar to Express!)

https://v3.router.vuejs.org/guide/advanced/navigation-guards.html
https://github.com/61040-fa22/fritter-frontend-private/blob/main/client/router.ts#L19-L33

